Software Tools for Regression Analysis of Fuzzy Data
نویسندگان
چکیده
The software tools are described that are designed for multivariate linear regression analysis of fuzzy data. The underlying method of f-regression is thoroughly described in [4]. The tools can be used for modeling both linear relationships and relationships that are nonlinear by nature, but linear in the parameters. Source data can be both crisp and fuzzy. The solution of a technical problem is described, namely the modeling of a nonlinear univariate function with large uncertainties in source data. It is shown that software tools enable detecting "outlying" data and achieving stable solution.
منابع مشابه
Feature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis
These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...
متن کاملEvaluation of moving bed biofilm reactor (MBBR) by applying adaptive neuro-fuzzy inference systeme (ANFIS), radial basis function (RBF) and Fuzzy Regression Analysis
The purpose of this study is to investigate the accuracy of predictions of aniline removal efficiency in a moving bed biofilm reactor (MBBR) by various methods, namely by RBF, ANFIS, and fuzzy regression analysis. The reactor was operated in an aerobic batch and was filled by light expanded clay aggregate (LECA) as a carrier for the treatment of Aniline synthetic wastewater. Exploratory data an...
متن کاملEstimation of coal proximate analysis factors and calorific value by multivariable regression method and adaptive neuro-fuzzy inference system (ANFIS)
The proximate analysis is the most common form of coal evaluation and it reveals the quality of a coal sample. It examines four factors including the moisture, ash, volatile matter (VM), and fixed carbon (FC) within the coal sample. Every factor is determined through a distinct experimental procedure under ASTM specified conditions. These determinations are time consuming and require a signific...
متن کاملFuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets
Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set. If we have fuzzy observations, using ordinal regression methods can't model them; In this case, using fuzzy regression is a good method. When observations are fuzzy and there are outliers in the data sets, using robust fuzzy regression methods are appropriate alternatives....
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001